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LECTURE 18: NOVEMBER 4

Let us first recall the construction from last time. We were looking at a polarized
variation of Hodge structure of weight n on the punctured disk A*. For each a € R,
we have a canonical extension ¥ of the vector bundle ¥ to a vector bundle on A,
and we defined

7; = U %a g]*”f/a
a€R

and showed that ¥ is a coherent PDa-module. The subsheaves ¥ define a decreas-
ing filtration by locally free &a-modules, in the sense that o < 3 implies 2 C 7.
Moreover, we have

t-ye C yotl and Oy - e - yo-l

for every a € R. The filtration ¥* records the information about the monodromy
transformation T' € GL(V), in the following manner. Recall that the fiber of each
canonical extension ¥ is canonically identified with the vector space V of flat
sections of exp* ¥ on H. Therefore

go fapyat+1l g JA A~ A A
FoYTOAL = F0 Jg 2 | 2V

Under this isomorphism, the operator t0; goes to the residue of the logarithmic
connection, hence to the endomorphism R € End(V). Recall that R = Rg + Ry,
where Rg has eigenvalues in the interval [a, «w + 1). Therefore

Yo/ Y> = B (Rg),

and under this isomorphism, the operator t9; — goes to R—a = Ry. In particular,
Y /¥>% is a finite-dimensional vector space on which the operator t0; — « acts
nilpotently.

Local systems. On A*, the local system ¥V of V-flat sections of ¥ is resolved
by the de Rham-type complex

Y Y QL. Q. ¥

To understand the meromorphic extension ¥ better, we now investigate the anal-
ogous complex

(18.1) Y Y QL @p, ¥,
which is a complex of sheaves of C-vector spaces on A. Outside the origin, the
complex is of course a resolution of ¥'V.

Lemma 18.2. The cohomology sheaves of this complex are j,(¥V) in degree 0,
and RYj.(¥V) in degree 1.

Proof. Since we already know what happens on A*, it suffices to compute the stalks
of the two cohomology sheaves at the origin. We have

R¥j.(#V)o = lim H*({U N A*, 7V).
U0
Using a covering of A* by two simply connected open sets, this is computed by the
complex
v T4y

and is therefore isomorphic to ker(T —id) for k = 0, and to coker(T —id) for k = 1.
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Now let us study the complex in (18.1). Observe that Q\ = Oadt, and that
t: ¥ — ¥ is an isomorphism by construction; the cohomology sheaves of our
complex are therefore going to be isomorphic to those of

v L0
The point is that for each o € R, we now have a subcomplex
yo Loy g,
Since t0; — a = Ry acts nilpotently on 770‘/”/7>°‘ >~ F,(Rgs), the complex
%a/«j;>a 0y 4/;04/77>a
is exact except for a = 0. This implies pretty easily that the inclusion

50 0 70

L]

7ty

induces isomorphisms on cohomology. Moreover, the surjection

40 0y 470

| |
7}0/77>0 0, 7}0/77>0

induces isomorphisms of the stalks of the cohomology sheaves the origin; the reason
is that ¥t = ¢# and so if a section on a neighborhood of the origin belongs
to every ¥/ then it must be zero by Krull’s lemma. This reduces the problem to
computing the cohomology of the complex

Eo(Rs) -2 Ey(Rs).

Recall that T' = €™ is the monodromy transformation. In degree 0, we get
{UEV | Rsv:RNv:O}:{UEV | Tvzv},
which is exactly the stalk of the sheaf j,#V. In degree 1, we get
Ey(Rs)/RNEy(Rs) 2 V/TV,

and you can check that this is isomorphic to coker(T — id), hence to the stalk of
the sheaf R'j, 7V. O

Recall from last time that ¥ = P - ¥ 1. The proof breaks down for 77>_1,
and so we can get a smaller Z-module by considering the submodule

M=@A~”VN>71Q7}.

It is called the minimal extension of the vector bundle with connection, for reasons
that will become clear in a moment. We have an induced filtration

VM = 7N M,
and by construction, VM = ¥ for o > —1.

Lemma 18.3. We have V- IM =9, - VIM +V>"I M.
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Proof. One inclusion is obvious. For the other one, suppose that we have a local
section s € V"IM. Then s € ¥ ! and also s € Za - ¥> !, and so

s=0is" +5"

for certain local sections s’ € M and s” € ¥>~1. 1 claim that this forces s’ € ¥9.
The reason is that

O, : 4/;()//7}>a N 4/;(1—1/77>(o¢—1)
is an isomorphism for every a # 0. Now if s’ €~“/7a for some o < 0, then we can
project the identity 0;s' = s — s” € ¥ ! into ¥ *~1/#>(@=1 and conclude that
s’ € ¥>%, hence s’ € ¥**¢ for some ¢ > 0. Repeating this argument finally many
times eventually yields s’ € #°. O

In analogy with what we did for ¥, let us define
gry M=V M/VZM,

which is a subspace of ¥*/¥ % hence again a finite-dimensional vector space. For
«a > —1, the inclusion is an isomorphism, hence

gry M = Eqo(Rs),
with t0; — « acting as the nilpotent operator Ry. For o = —1, the lemma shows
that
Oy gry M — gr(,l./\/l
is surjective. Note that t: M — M is injective (because this is true on the larger
PDa-module ¥ .

Exzercise 18.1. Check that the de Rham-type complex
M — QlA Ry M

only has cohomology in degree 0, and that the 0-th cohomology sheaf is isomorphic
to 7, 7V. By going to the smaller Z-module M, we have therefore eliminated the
cohomology sheaf in degree 1.

When we discuss the polarization, we will see that there are other good reasons
for working with M instead of with the meromorphic extension %#'.

The Hodge filtration. The next step is to extend the Hodge bundles FP¥ to a
filtration of M. In Z-module theory, it is customary to study Z-modules (which
are typically not coherent as ¢-modules) with the help of increasing filtrations by
coherent &-modules. We should therefore convert the decreasing Hodge filtration
into an increasing filtration by setting

FV = F Py CV.
def
The Griffiths transversality condition reads
Oy FpV =V, FyV C FpV,

which means that the filtration F,% is compatible with the action by differential
operators. How can we get a suitable filtration of M? Since M C 5,7, one could
try to use
FM=MnNG. 7V C57,
but the trouble is that these sheaves will generally not be coherent over &a. So we
have to proceed more carefully. Recall from Theorem 9.1 that the Hodge bundles
extend to holomorphic subbundles of any canonical extension; let us denote these
bundles by the symbol
E, 7% and F,¥>°.
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Note. The fact that Fp”f7“ is a subbundle means that the quotient sheaf ”f;‘x/Fp”f;a
is locally free; you should convince yourself that, therefore,
BV =70 j.(F,%) Cj.7.

From this point of view, Theorem 9.1 is asserting that the &-module on the right-
hand side is coherent.

Since M = P - ¥>1, and since we would like the filtration on M to be
compatible with the action by differential operators, we now define

Fp./\/l = Z 8,{ 'Fp,jaf;>_1.
j=0
We have F,,7 = 0 for p < py, and therefore also F, M = 0 for p < py. For the
same reason, the sum on the right-hand side is actually finite, and so each F, M is
finitely generated as an Oa-module, and therefore coherent. The filtration is also
“good” in the sense of Z-module theory, which means the following.

Lemma 18.4. We have 0, - F, M C F, 11 M, with equality for p > 0.

Proof. We only need to prove the second half of the assertion; the first is obvious
from the definition. For any p € Z, we have

FpatM=Fpt 7”704 01 Fppy- 7”7 = B V77 4+ 0, FM.
=0
For p > 0, we have F,¥>~! = F,.,%>~1 = ¥>~1 Since we already know that
O,: V>~1 = ¥>~1 is surjective, this gives us

Fon V> =0, -F,7>71 Co, - FM,
and therefore Fj, 1M = 0, - F), M. O

In conclusion, we obtain a coherent Za-module M, together with an increasing
filtration by coherent &a-modules F, M. The filtration is compatible with differ-
ential operators, and if we restrict (M, Fy M) to the punctured disk, we get back
(V,FY).

The polarization. The last thing to do is to extend the polarization
hy: V Q¢ v — CRS

to some kind of pairing on M. Here again, we need to go from C*°-functions to a
larger class of functions, to account for the singularity at the origin. A clue to what
sort of functions to allow comes from our computation of the pairing in Lecture 9.
Back then, we found that in the trivialization &a ®c V = #>~1, the polarization
takes the form

o= L(t) , 4
hy(led, 1eu")= Y [f?*> 2!) (—1)h(vg, Ryvh).

—1<a<0 =0

Here v',v"” € V are two vectors, and v/, v are the components with respect to the
eigenspace decomposition
V= @ Eo(Rs),
—1<a<0
where R = Rs+ Ry is the Jordan decomposition of the residue R = Resg V. Notice
that the functions |¢t|?*L(¢)? in the above formula are all locally integrable near the
origin; since |t|~2 is not locally integrable, this property would fail if we used ¥l



102

Since M = Dn - ”/7>_1, we also need to allow derivatives, and so it is natural
to work with distributions: every locally integrable function defines a distribution,
and distributions can be differentiated to any order.

Definition 18.5. A distribution on a 1-dimensional complex manifold X is a con-
tinuous linear functional on the space AL1(X,C) of compactly supported smooth
(1,1)-forms.

We denote by Db(X) the space of distributions on X. Given a distribution
D € Db(X) and a compactly supported (1, 1)-form ¢, we denote by

(D,n) eC

the complex number obtained by evaluating D on the “test form” n. If t is a
local coordinate, we can write 1 in the form pdi A dt for ¢ € C°(X) a compactly
supported smooth function.

Example 18.6. Any locally integrable function f: X — C defines a distribution by

(f,m) = /X fn.

By analogy with this example, people sometimes write

Dn=(D
/X n=(D.n
for the evaluation of D on 7.
Derivatives of distributions are defined by formally integrating by parts: in local
coordinates, we set

(0D, pdt A dT) = — <D, %‘fdt A dt>

_ _ de _
(8:D, pdt A dt) == <D, S7dN dt> :

This is consistent with the formula for integration by parts in case D is the distri-
bution defined by a continuously differentiable function. By this formula, Db(X)
becomes a left module over the ring of differential operators on X and its conjugate.

We denote by Dbx the sheaf with I'(U, Dbx ) = Db(U) for open subsets U C X.
This is a left module over the sheaf of differential operators Zx and its conjugate
9% (and the two structures commute).

Back to the problem of extending the polarization to M. Since |t|>*L(t)7 defines
a distribution for a > —1 and j > 0, we already have a pairing

hy : >l Xc S Dba .
Since M = D - “I7>*1, we obtain the desired sesquilinear pairing
h/\/l M Kc M — DbA

by extending sesquilinearly.
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