
98

Lecture 18: November 4

Let us first recall the construction from last time. We were looking at a polarized
variation of Hodge structure of weight n on the punctured disk ∆∗. For each α ∈ R,
we have a canonical extension Ṽ α of the vector bundle V to a vector bundle on ∆,
and we defined

Ṽ =
⋃

α∈R
Ṽ α ⊆ j∗V ,

and showed that Ṽ is a coherent D∆-module. The subsheaves Ṽ α define a decreas-
ing filtration by locally free O∆-modules, in the sense that α ≤ β implies Ṽ β ⊆ Ṽ α.
Moreover, we have

t · Ṽ α ⊆ Ṽ α+1 and ∂t · Ṽ α ⊆ Ṽ α−1

for every α ∈ R. The filtration Ṽ • records the information about the monodromy
transformation T ∈ GL(V ), in the following manner. Recall that the fiber of each

canonical extension Ṽ α is canonically identified with the vector space V of flat
sections of exp∗ V on H̃. Therefore

Ṽ α/Ṽ α+1 = Ṽ α/tṼ α ∼= Ṽ α
∣∣
0
∼= V.

Under this isomorphism, the operator t∂t goes to the residue of the logarithmic
connection, hence to the endomorphism R ∈ End(V ). Recall that R = RS + RN ,
where RS has eigenvalues in the interval [α, α+ 1). Therefore

Ṽ α/Ṽ >α ∼= Eα(RS),

and under this isomorphism, the operator t∂t−α goes to R−α = RN . In particular,
Ṽ α/Ṽ >α is a finite-dimensional vector space on which the operator t∂t − α acts
nilpotently.

Local systems. On ∆∗, the local system V ∇ of ∇-flat sections of V is resolved
by the de Rham-type complex

V Ω1
∆∗ ⊗O∆∗ V∇

To understand the meromorphic extension Ṽ better, we now investigate the anal-
ogous complex

(18.1) Ṽ Ω1
∆ ⊗O∆

Ṽ∇ ,

which is a complex of sheaves of C-vector spaces on ∆. Outside the origin, the
complex is of course a resolution of V ∇.

Lemma 18.2. The cohomology sheaves of this complex are j∗(V ∇) in degree 0,
and R1j∗(V ∇) in degree 1.

Proof. Since we already know what happens on ∆∗, it suffices to compute the stalks
of the two cohomology sheaves at the origin. We have

Rkj∗(V
∇)0 = lim

U30
Hk(U ∩∆∗,V ∇).

Using a covering of ∆∗ by two simply connected open sets, this is computed by the
complex

V V
T−id

and is therefore isomorphic to ker(T − id) for k = 0, and to coker(T − id) for k = 1.



99

Now let us study the complex in (18.1). Observe that Ω1
∆ = O∆dt , and that

t : Ṽ → Ṽ is an isomorphism by construction; the cohomology sheaves of our
complex are therefore going to be isomorphic to those of

Ṽ Ṽ .
t∂t

The point is that for each α ∈ R, we now have a subcomplex

Ṽ α Ṽ α.
t∂t

Since t∂t − α = RN acts nilpotently on Ṽ α/Ṽ >α ∼= Eα(RS), the complex

Ṽ α/Ṽ >α Ṽ α/Ṽ >αt∂t

is exact except for α = 0. This implies pretty easily that the inclusion

Ṽ 0 Ṽ 0

Ṽ Ṽ

t∂t

t∂t

induces isomorphisms on cohomology. Moreover, the surjection

Ṽ 0 Ṽ 0

Ṽ 0/Ṽ >0 Ṽ 0/Ṽ >0

t∂t

t∂t

induces isomorphisms of the stalks of the cohomology sheaves the origin; the reason
is that Ṽ α+1 = tṼ α, and so if a section on a neighborhood of the origin belongs
to every Ṽ α, then it must be zero by Krull’s lemma. This reduces the problem to
computing the cohomology of the complex

E0(RS) E0(RS).
RN

Recall that T = e2πiR is the monodromy transformation. In degree 0, we get
{
v ∈ V

∣∣ RSv = RNv = 0
}

=
{
v ∈ V

∣∣ Tv = v
}
,

which is exactly the stalk of the sheaf j∗V ∇. In degree 1, we get

E0(RS)/RNE0(RS) ∼= V/TV,

and you can check that this is isomorphic to coker(T − id), hence to the stalk of
the sheaf R1j∗V ∇. �

Recall from last time that Ṽ = D∆ · Ṽ −1. The proof breaks down for Ṽ >−1,
and so we can get a smaller D-module by considering the submodule

M = D∆ · Ṽ >−1 ⊆ Ṽ .

It is called the minimal extension of the vector bundle with connection, for reasons
that will become clear in a moment. We have an induced filtration

V αM = Ṽ α ∩M,

and by construction, V αM = Ṽ α for α > −1.

Lemma 18.3. We have V −1M = ∂t · V 0M+ V >−1M.
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Proof. One inclusion is obvious. For the other one, suppose that we have a local
section s ∈ V −1M. Then s ∈ Ṽ −1 and also s ∈ D∆ · Ṽ >−1, and so

s = ∂ts
′ + s′′

for certain local sections s′ ∈ M and s′′ ∈ Ṽ >−1. I claim that this forces s′ ∈ Ṽ 0.
The reason is that

∂t : Ṽ α/Ṽ >α → Ṽ α−1/Ṽ >(α−1)

is an isomorphism for every α 6= 0. Now if s′ ∈ Ṽ α for some α < 0, then we can
project the identity ∂ts

′ = s − s′′ ∈ Ṽ −1 into Ṽ α−1/Ṽ >(α−1), and conclude that

s′ ∈ Ṽ >α, hence s′ ∈ Ṽ α+ε for some ε > 0. Repeating this argument finally many
times eventually yields s′ ∈ Ṽ 0. �

In analogy with what we did for Ṽ , let us define

grαV M = V αM/V >αM,

which is a subspace of Ṽ α/Ṽ >α, hence again a finite-dimensional vector space. For
α > −1, the inclusion is an isomorphism, hence

grαV M∼= Eα(RS),

with t∂t − α acting as the nilpotent operator RN . For α = −1, the lemma shows
that

∂t : gr0
V M→ gr−1

V M
is surjective. Note that t : M→M is injective (because this is true on the larger

D∆-module Ṽ .

Exercise 18.1. Check that the de Rham-type complex

M→ Ω1
∆ ⊗O∆ M

only has cohomology in degree 0, and that the 0-th cohomology sheaf is isomorphic
to j∗V ∇. By going to the smaller D-module M, we have therefore eliminated the
cohomology sheaf in degree 1.

When we discuss the polarization, we will see that there are other good reasons
for working with M instead of with the meromorphic extension Ṽ .

The Hodge filtration. The next step is to extend the Hodge bundles F pV to a
filtration of M. In D-module theory, it is customary to study D-modules (which
are typically not coherent as O-modules) with the help of increasing filtrations by
coherent O-modules. We should therefore convert the decreasing Hodge filtration
into an increasing filtration by setting

FpV =
def

F−pV ⊆ V .

The Griffiths transversality condition reads

∂t · FpV = ∇∂tFpV ⊆ Fp+1V ,

which means that the filtration F•V is compatible with the action by differential
operators. How can we get a suitable filtration of M? Since M ⊆ j∗V , one could
try to use

FpM =M∩ j∗FpV ⊆ j∗V ,
but the trouble is that these sheaves will generally not be coherent over O∆. So we
have to proceed more carefully. Recall from Theorem 9.1 that the Hodge bundles
extend to holomorphic subbundles of any canonical extension; let us denote these
bundles by the symbol

FpṼ
α and FpṼ

>α.
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Note. The fact that FpṼ α is a subbundle means that the quotient sheaf Ṽ α/FpṼ α

is locally free; you should convince yourself that, therefore,

FpṼ
α = Ṽ α ∩ j∗(FpV ) ⊆ j∗V .

From this point of view, Theorem 9.1 is asserting that the O-module on the right-
hand side is coherent.

Since M = D∆ · Ṽ >−1, and since we would like the filtration on M to be
compatible with the action by differential operators, we now define

FpM =

∞∑

j=0

∂jt · Fp−jṼ >−1.

We have FpV = 0 for p ≤ p0, and therefore also FpM = 0 for p ≤ p0. For the
same reason, the sum on the right-hand side is actually finite, and so each FpM is
finitely generated as an O∆-module, and therefore coherent. The filtration is also
“good” in the sense of D-module theory, which means the following.

Lemma 18.4. We have ∂t · FpM⊆ Fp+1M, with equality for p� 0.

Proof. We only need to prove the second half of the assertion; the first is obvious
from the definition. For any p ∈ Z, we have

Fp+1M = Fp+1Ṽ
>−1 +

∞∑

j=0

∂j+1
t · F(p+1)−(j+1)Ṽ

>−1 = Fp+1Ṽ
>−1 + ∂t · FpM.

For p � 0, we have FpṼ >−1 = Fp+1Ṽ >−1 = Ṽ >−1. Since we already know that

∂t : Ṽ >−1 → Ṽ >−1 is surjective, this gives us

Fp+1Ṽ
>−1 = ∂t · FpṼ >−1 ⊆ ∂t · FpM,

and therefore Fp+1M = ∂t · FpM. �

In conclusion, we obtain a coherent D∆-module M, together with an increasing
filtration by coherent O∆-modules FpM. The filtration is compatible with differ-
ential operators, and if we restrict (M, F•M) to the punctured disk, we get back
(V , F•V ).

The polarization. The last thing to do is to extend the polarization

hV : V ⊗C V → C∞∆∗

to some kind of pairing on M. Here again, we need to go from C∞-functions to a
larger class of functions, to account for the singularity at the origin. A clue to what
sort of functions to allow comes from our computation of the pairing in Lecture 9.
Back then, we found that in the trivialization O∆ ⊗C V ∼= Ṽ >−1, the polarization
takes the form

hV (1⊗ v′, 1⊗ v′′) =
∑

−1<α≤0

|t|2α
∞∑

j=0

L(t)j

j!
(−1)jh

(
v′α, R

j
Nv
′′
α

)
.

Here v′, v′′ ∈ V are two vectors, and v′α, v
′′
α are the components with respect to the

eigenspace decomposition

V =
⊕

−1<α≤0

Eα(RS),

where R = RS+RN is the Jordan decomposition of the residue R = Res0∇. Notice
that the functions |t|2αL(t)j in the above formula are all locally integrable near the

origin; since |t|−2 is not locally integrable, this property would fail if we used Ṽ −1.



102

Since M = D∆ · Ṽ >−1, we also need to allow derivatives, and so it is natural
to work with distributions: every locally integrable function defines a distribution,
and distributions can be differentiated to any order.

Definition 18.5. A distribution on a 1-dimensional complex manifold X is a con-
tinuous linear functional on the space A1,1

c (X,C) of compactly supported smooth
(1, 1)-forms.

We denote by Db(X) the space of distributions on X. Given a distribution
D ∈ Db(X) and a compactly supported (1, 1)-form ϕ, we denote by

〈D, η〉 ∈ C
the complex number obtained by evaluating D on the “test form” η. If t is a
local coordinate, we can write η in the form ϕdt ∧ dt for ϕ ∈ C∞c (X) a compactly
supported smooth function.

Example 18.6. Any locally integrable function f : X → C defines a distribution by

〈f, η〉 =

∫

X

fη.

By analogy with this example, people sometimes write∫

X

Dη =
def
〈D, η〉

for the evaluation of D on η.

Derivatives of distributions are defined by formally integrating by parts: in local
coordinates, we set

〈
∂tD,ϕdt ∧ dt

〉
=
def
−
〈
D,

∂ϕ

∂t
dt ∧ dt

〉

〈
∂tD,ϕdt ∧ dt

〉
=
def
−
〈
D,

∂ϕ

∂t
dt ∧ dt

〉
.

This is consistent with the formula for integration by parts in case D is the distri-
bution defined by a continuously differentiable function. By this formula, Db(X)
becomes a left module over the ring of differential operators on X and its conjugate.

We denote by DbX the sheaf with Γ(U,DbX) = Db(U) for open subsets U ⊆ X.
This is a left module over the sheaf of differential operators DX and its conjugate
DX̄ (and the two structures commute).

Back to the problem of extending the polarization toM. Since |t|2αL(t)j defines
a distribution for α > −1 and j ≥ 0, we already have a pairing

hV : Ṽ >−1 ⊗C Ṽ >−1 → Db∆ .

Since M = D∆ · Ṽ >−1, we obtain the desired sesquilinear pairing

hM : M⊗CM→ Db∆

by extending sesquilinearly.
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